This print-out should have 27 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 4.0 points

A 10.0 L vessel contains 0.0015 mole CO_2 and 0.10 mole CO. If a small amount of carbon is added to this vessel and the temperature is raised to $1000^{\circ}C$

$$CO_2(g) + C(s) \rightleftharpoons 2CO(g)$$
,

will more CO form? The value of K_c for this reaction is 1.17 at 1000°C. Assume that the volume of the gas in the vessel is 10.0 L.

- 1. Yes, the rate of the forward reaction will increase to produce more CO.
- **2.** Unable to determine this from the data provided.
- **3.** No, the rate of the reverse reaction will increase to produce more CO_2 .

002 4.0 points

The expression for K_c for the reaction at equilibrium is

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightleftharpoons 4 \text{ NO}(g) + 6 \text{ H}_2O(g)$$

- 1. $\frac{[NH_3]^4 [O_2]^5}{[NO]^4 [H_2O]^6}$
- **2.** $[NO]^4 [H_2O]^6$
- 3. $[NH_3]^4 [O_2]^5$
- 4. $\frac{[\text{NO}]^4 \, [\text{H}_2\text{O}]^6}{[\text{NH}_3]^4 \, [\text{O}_2]^5}$

003 4.0 points

Consider the reaction

$$2\operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2\operatorname{SO}_3(g)$$

where $\Delta H_{\rm rxn} = -198$ kJ. The amount of $SO_2(g)$ at equilibrium increases when

- 1. the pressure is increased.
- **2.** the volume is increased.

- **3.** the temperature is decreased.
- **4.** more oxygen is added.
- **5.** SO_3 is removed.

004 4.0 points

The reaction

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$
,

has an equilibrium constant of 4.0×10^8 at 25° C. What will eventually happen if 44.0 moles of NH₃, 0.452 moles of N₂, and 0.108 moles of H₂ are put in a 10.0 liter container at 25° C?

- **1.** More NH_3 will be formed.
- **2.** More N_2 and H_2 will be formed.
- **3.** Nothing; the system is at equilibrium.

005 4.0 points

The reaction

$$A + B \rightleftharpoons C + 2D$$

has an equilibrium constant of 3.7×10^{-3} . Consider a reaction mixture with

$$[A] = 2.0 \times 10^{-2} \text{ M}$$
 $[C] = 2.4 \times 10^{-6} \text{ M}$

$$[B] = 1.7 \times 10^{-4} \text{ M}$$
 $[D] = 3.5 \times 10^{-3} \text{ M}$

Which of the following statements is definitely true?

- 1. The forward reaction can occur to a greater extent than the reverse reaction until equilibrium is established.
- **2.** No conclusions about the system can be made without additional information.
- **3.** The reverse reaction can occur to a greater extent than the forward reaction until equilibrium is established.
 - 4. Heat will be evolved.
 - **5.** The system is at equilibrium.

006 4.0 points

For an exothermic reaction, what would happen to the numerical value of K_c , if we increase the temperature at constant pressure?

- 1. K_c would either increase or decrease, depending on the number of moles of gas involved.
 - **2.** $K_{\rm c}$ would not change.
 - **3.** $K_{\rm c}$ would decrease.
- **4.** K_c would either increase or decrease, depending on the concentrations.
 - **5.** $K_{\rm c}$ would increase.

007 4.0 points

Suppose the reaction mixture

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

is at equilibrium at a given temperature and pressure. The pressure is then increased at constant temperature by compressing the reaction mixture, and the mixture is then allowed to reestablish equilibrium. At the new equilibrium,

- 1. there is the same amount of ammonia present as there was originally.
 - 2. the nitrogen is used up completely.
- **3.** there is more ammonia present than there was originally.
- **4.** there is less ammonia present than there was originally.

008 4.0 points

What happens to the concentration of NO(g) when the total pressure on the equilibrium reaction

$$3 \text{ NO}_2(g) + \text{H}_2\text{O}(\ell) \rightleftharpoons 2 \text{ HNO}_3(aq) + \text{NO}(g)$$

is increased (by compression)?

- 1. decreases
- 2. increases
- 3. remains the same
- 4. Unable to determine

009 4.0 points

Consider the system

$$2 N_2 O_5(g) \rightleftharpoons 2 N_2 O_4(g) + O_2(g) + heat$$

at equilibrium at 25° C. If the temperature were raised would the equilibrium be shifted to produce more N_2O_5 or more N_2O_4 ?

- 1. There would be no effect.
- 2. more N_2O_5
- 3. more N_2O_4

010 4.0 points

The system

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

is at equilibrium at a fixed temperature with a partial pressure of H_2 of 0.200 atm, a partial pressure of I_2 of 0.200 atm, and a partial pressure of HI of 0.100 atm. An additional 0.34 atm pressure of HI is admitted to the container, and it is allowed to come to equilibrium again. What is the new partial pressure of HI?

- 1. 0.142
- 2. 0.152
- 3. 0.138
- 4. 0.132
- 5. 0.162
- 6. 0.164
- 7. 0.168
- 8. 0.146
- 9. 0.15
- 10. 0.136

Answer in units of atm.

011 4.0 points

Consider the following reactions at 25°C:

re	eaction
0	NIO (

reaction
$$\underline{K_c}$$

 $2 \text{ NO(g)} \rightleftharpoons N_2(g) + O_2(g)$ 1×10^{30}

$$2 \text{ H}_2\text{O(g)} \rightleftharpoons 2 \text{ H}_2(\text{g}) + \text{O}_2(\text{g})$$
 5×10^{-82}

$$2 CO(g) + O_2(g) \rightleftharpoons 2 CO_2(g)$$
 3×10^{91}

Which compound is most likely to dissociate and give $O_2(g)$ at $25^{\circ}C$?

- **1.** CO
- **2.** CO₂
- **3.** NO
- **4.** H₂O

0124.0 points

Suppose the reaction

$$A \rightleftharpoons B$$

has an equilibrium constant of 1.0 and the initial concentrations of A and B are 0.5 M and 0.0 M, respectively. Which of the following is the correct value for the equilibrium concentration of A?

- 1. None of these is correct.
- **2.** 0.250 M
- **3.** 1.50 M
- **4.** 0.500 M
- **5.** 1.00 M

0134.0 points

The system

$$CO_2(g) + H_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

is at equilibrium at some temperature. At equilibrium a 4.00 L vessel contains 1.00 mole CO_2 , 1.00 mole H_2 , 2.40 moles H_2O , and 2.40 moles CO. How many moles of CO₂ must be added to the system to bring the equilibrium CO concentration to 0.661 mol/L?

- 1. 1.188
- 2. 1.069

- 3. 1.694
- 4. 8.112
- 5. 0.732
- 6. 3.672
- 7. 0.849
- 8. 6.576
- 9. 2.121
- 10. 1.747

Answer in units of moles.

4.0 points 014

Given the reaction

$$2 NH_3(g) \rightleftharpoons N_2(g) + 3 H_2(g)$$

at equilibrium, if the pressure is doubled (think of the volume of the container halving), in which direction will the reaction shift?

- 1. left
- 2. no change
- 3. right

0154.0 points

Consider the reaction

$$2 \operatorname{HgO}(s) \rightleftharpoons 2 \operatorname{Hg}(\ell) + O_2(g)$$
.

What is the form of the equilibrium constant K for the reaction?

1.
$$K = \frac{[O_2]}{[HgO]^2}$$

2.
$$K = [O_2]$$

3.
$$K = \frac{[\text{Hg}]^2 [\text{O}_2]}{[\text{HgO}]^2}$$

- **4.** None of the other answers is correct.
- **5.** $K = [Hg]^2 [O_2]$

4.0 points 016

At 990°C, $K_c = 2.05$ for the reaction:

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

How many moles of $H_2O(g)$ are present in an equilibrium mixture resulting from the addition of 1.38 mole of H_2 , 1.89 moles of CO_2 , 0.881 moles of H_2O , and 1.01 mole of CO to a 5.00 liter container at 990° C?

- **1.** 1.44 mol
- **2.** 1.50 mol
- **3.** 1.56 mol
- **4.** 1.41 mol
- **5.** 1.47 mol

017 4.0 points

For a certain reaction, K = 44.6 at 300 K and the reaction is endothermic by 7.3 kJ/mol. What is K at 500 K?

- 1. 98.2928
- 2. 107.698
- 3. 313.761
- 4. 407.498
- 5. 517.733
- 6. 354.101
- 7. 476.7
- 8. 179.632
- 9. 122.704
- 10. 143.804

Given $K_{\rm p}=4.6\times 10^{-14}$ and $\Delta H^0=115$ kJ/mol for the reaction

$$2\operatorname{Cl}_2(g) + 2\operatorname{H}_2O(g) \rightleftharpoons 4\operatorname{HCl}(g) + O_2(g)$$

at 25°C, what is K_p at 400°C?

- 1. 1.4×10^{-5}
- **2.** 7.7×10^{-3}
- 3. 3.9×10^{-4}
- 4. 7.9×10^{-2}
- **5.** 1.3×10^2

019 4.0 points

Consider the reaction

$$Ni(CO)_4(g) \rightarrow Ni(s) + 4CO(g)$$
.

If the initial concentration of $Ni(CO)_4(g)$ is 1.0 M, and x is the equilibrium concentration of CO(g), what is the correct equilibrium relation?

1.
$$K_{\rm c} = \frac{x^5}{1.0 - \frac{x}{4}}$$

2.
$$K_{\rm c} = \frac{x^4}{1.0 - \frac{x}{4}}$$

2.
$$K_{\rm c} = \frac{x^4}{1.0 - \frac{x}{4}}$$
3. $K_{\rm c} = \frac{x}{1.0 - \frac{x}{4}}$

4.
$$K_{\rm c} = \frac{4 \, x}{1.0 - 4 x}$$

5.
$$K_{\rm c} = \frac{x^4}{1.0 - 4x}$$

020 4.0 points

An equilibrium in which processes occur continuously, with NO NET change, is called

- 1. static equilibrium.
- 2. heterogeneous equilibrium.
- **3.** homogeneous equilibrium.
- **4.** dynamic equilibrium.

0214.0 points

At 1000 K the equilibrium pressure of the three gases in one mixture

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

were found to be 0.562 atm SO_2 , 0.101 atm O_2 , and 0.332 atm SO_3 . Calculate the value of $K_{\rm p}$ for the reaction as written.

- **1.** 0.289
- **2.** 0.171
- **3.** 5.83
- **4.** 3.46

5. 2.64

022 4.0 points

Calculate the equilibrium constant at 25°C for a reaction for which $\Delta G^0 = -3.35$ kcal/mol.

- 1. -285.64
- **2.** 142.82
- **3.** 571.281
- 4. 285.64
- **5.** 2856.4

023 4.0 points

A mixture of $PCl_5(g)$ and $Cl_2(g)$ is placed into a closed container. At equilibrium it is found that $[PCl_5] = 0.72$ M, $[Cl_2] = 0.45$ M and $[PCl_3] = 0.12$ M.

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

What is the value of K_c for the reaction?

- **1.** 181
- **2.** 0.075
- **3.** 0.0375
- 4. 0.225
- **5.** 0.15

024 4.0 points

 $K_{\rm c} = 2.6 \times 10^8$ at 825 K for the reaction

$$2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g)$$

The equilibrium concentration of H_2 is 0.0020 M and that of S_2 is 0.0010 M. What is the equilibrium concentration of H_2S ?

- **1.** 0.10 M
- **2.** 1.02 M
- **3.** 0.0010 M

4. 10 M

025 4.0 points

A 2.000 liter vessel is filled with 4.000 moles of SO_3 and 6.000 moles of O_2 . When the reaction

$$2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$$

comes to equilibrium a measurement shows that only 1.000 mole of SO_3 remains. How many moles of O_2 are in the vessel at equilibrium?

- 1. None of these is correct.
- 2. 7.000 mol
- **3.** 12.000 mol
- 4. 3.750 mol
- **5.** 7.500 mol

026 4.0 points

At $T = 500^{\circ}$ C, $K_{c} = 36$ for the gas-phase reaction

$$A + B \rightleftharpoons C + D$$

Starting with 2.04 moles each of A and B in a 5.00 liter container, what will be the equilibrium concentration of C at this temperature?

- 1. 0.349714
- 2. 0.6516
- 3. 0.4896
- 4. 0.675692
- 5. 0.315333
- 6. 0.256
- 7. 0.600889
- 8. 0.607286
- 9. 0.452
- 10. 0.4788

Answer in units of M.

027 4.0 points

Suppose the reaction

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

has an equilibrium constant $K_c = 49$ and the initial concentration of H_2 and I_2 is 0.5 M and HI is 0.0 M. Which of the following is the correct value for the final concentration of HI(g)?

- **1.** 0.219 M
- **2.** 0.778 M
- **3.** 0.389 M
- $\mathbf{4.}\ 0.599\ \mathrm{M}$
- **5.** 0.250 M